- 技术文章
数据采集模块的原理说明
2018-10-30 13:28:11 来源:数据采集模块的系统框图如图1所示。图中的ispLSI2032是整个数据采集系统的控制核心它内部包括了地址信号产生、锁存、ADC转换数据的比较、数据存储器的读写控制以及大部分控制逻辑晶振电路产生的12MHz时钟可直接在is-pLSI2032内部进行2分频以得到6MHz的采样时钟。高速数据缓存部分由两片SRAM构成该SRAM可提供自己的地址线、数据线和控制线。两个端口可分别与ispLSI2032和单片机的P0口连接。用is-pLSI2032可递增RAM的地址同时可提供写入脉冲以将A/D转换数据写入RAM。当A/D转换的数据超出某一上下限时,系统会将地址数据写入is-pLSI2032内部的锁存器中并在其后打开锁存,同时将地址送到单片机的P0口,单片机由此地址读出RAM中相应地址的数据,并通过RS232口传送到PC机或其它外设。
图2所示是该数据采集系统的基本硬件电路图。图中的A/D转换芯片选用的是美国MAXIM公司的12位A/D转换器MAX120,它有全控制模式、独立模式、慢存储模式、ROM模式和连续转换模式5种工作模式。在此电路中,MAX120工作于连续转换模式, 由于MAX120芯片的MODE=DGND,因此,它的INT/BUSY为BUSY输出。单片机启动转换时,INT/BUSY变为低电平,同时将INT0(P3.2)置低,以使计数器的计数状态与MAX120的INT/BUSY信号一致,也就是说,每转换完一次,计数器就加以产生新的存储器地址;转换结束后,INT/BUSY转变为高电平,数据在引脚D0~D11处有效,此时WE信号为低,存储器写端口打开,并将ADC所转换的数据写入与计数器所产生地址对应的存储单元。继而INT/BUSY信号再次变低, MAX120进入下一次转换。直到采集的数据超出某一上下限,ADC模块中的比较器产生一信号使单片机外部中断,进而转入中断数据处理。其后单片机将读取存储在锁存器中的地址信号,并将其存储;同时由此地址读出存储在存储器中的超出上下限的数据。单片机定时取数时,先将INT0(P3.2)置高,此时地址产生器的累加由单片机控制(通过T0口,即P3.4)。单片机控制计数器重新计数并产生地址数据,产生的地址送到单片机P0口,并由此地址读取存储器中相应地址的数据,*后通过RS232口传送到PC或其它外设。
上一篇:隔离放大器原理下一篇:频率信号与电压、电流信号隔离转换器工业现场应用新发布